高中数学必修5恒成立(高中数学的恒成立问题)

大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修5恒成立的问题,于是小编就整理了3个相关介绍高中数学必修5恒成立的解答,让我们一起看看吧。
高中数学恒成立问题的几种解法?
m>f(x)恒成立,m>f(x)最大值即可。
m<f(x)恒成立,m<f(x)最小值即可。
m>f(x)有解,m>f(x)最小值即可。
m<f(x)有解,m<f(x)最大值即可。
注意:f(x)>g(x)恒成立或者有解,不满足上述条件,具体问题具体分析。
原因就是f(x)取最值的时候,g(x)不一定同时取最值。
在数学里什么叫做恒成立`?
数学上,恒等式是无论其变量如何取值,等式永远成立的算式。
两个解析式之间的一种关系。给定两个解析式,如果对于它们的定义域(见函数)的公共部分(或公共部分的子集)的任一数或数组,都有相等的值,就称这两个解析式是恒等的。例如x2-y2与(x+y)(x-y) ,对于任一组实数(a,b),都有a2-b2=(a+b)(a-b),所以x2-y2与( x+y)(x-y)是恒等的。
两个解析式恒等与否不能脱离指定的数集来谈,因为同样的两个解析式,在一个数集内是恒等的,在另一个数集内可能是不恒等的。例如与x,在非负实数集内是恒等的,而在实数集内是不恒等的。
函数恒成立的条件?
恒成立的条件就是:
①分母不能为0,否则无意义.
②分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数.
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数.(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
到此,以上就是小编对于高中数学必修5恒成立的问题就介绍到这了,希望介绍关于高中数学必修5恒成立的3点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.sssnss.com/post/94961.html