高中数学必修直线方程(高中数学必修直线方程题)

大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修直线方程的问题,于是小编就整理了3个相关介绍高中数学必修直线方程的解答,让我们一起看看吧。
直线方程的八种方法?
1、一般式:Ax+By+C=0(A、B不同时为0)【适用于所有直线】
2、点斜式:y-y0=k(x-x0) 【适用于不垂直于x轴的直线】
表示斜率为k,且过(x0,y0)的直线
3、截距式:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线
4、斜截式:y=kx+b【适用于不垂直于x轴的直线】
表示斜率为k且y轴截距为b的直线
5、两点式:【适用于不垂直于x轴、y轴的直线】
表示过(x1,y1)和(x2,y2)的直线
6、交点式:f1(x,y) *m+f2(x,y)=0 【适用于任何直线】
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线
7、点平式:f(x,y) -f(x0,y0)=0【适用于任何直线】
表示过点(x0,y0)且与直线f(x,y)=0平行的直线
8、法线式:x·cosα+ysinα-p=0【适用于不平行于坐标轴的直线】
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度
9、点向式:(x-x0)/u=(y-y0)/v (u≠0,v≠0)【适用于任何直线】
表示过点(x0,y0)且方向向量为(u,v )的直线
10、法向式:a(x-x0)+b(y-y0)=0【适用于任何直线】
表示过点(x0,y0)且与向量(a,b)垂直的直线。
一、位置关系
若直线L1:A1x+B1y+C1 =0与直线 L2:A2x+B2y+C2=0
1、当A1B2-A2B1≠0时, 相交
2、A1/A2=B1/B2≠C1/C2, 平行
3、A1/A2=B1/B2=C1/C2, 重合
4、A1A2+B1B2=0, 垂直
二、局限性
各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线。
(2)两点式不能表示与坐标轴平行的直线。
(3)截距式不能表示与坐标轴平行或过原点的直线。
(4)直线方程的一般式中系数A、B不能同时为零
求直线的方程一共有五种方法,第一种是一般式,只求出ax十by十c二0中的a,b,c就可以知道此直线方程了,第二种若知道直线的斜率和该直线在y轴上的截距也可以求出该直线,第三种若知道直线上一点的坐标和该直线的斜率也可以求出该直线方程的
人教版直线方程是必修几?
高中数学直线方程是必修二,在平面解析式几何中首先先学习了直线的方程的四种形式点斜式斜截式,截距式,两点式,斜率是直线的倾斜角的正切值,倾斜角是一条直线向上的方向与x轴的正方向所成码的最小的正角,直线的方程最关键的是斜率
数学中关于直线对称的直线方程怎么求?
直线关于点对称的直线方程
:已知直线l1关于l2与l3对称,若l1为ax+by+c=0,l2为Ax+By+C=0,l3满足(ax+by+c)/(Ax+By+C)=(2Aa+2bB)/(A²+B²)。
一般的,求与直线ax+by+c=0关于x=a0对称的直线方程,先写成a(x-a0)+by+c+aa0=0的形式,再写成a(a0-x)+by+c+aa0=0形式,化简后即是所求值。
一般的,求与直线ax+by+c=0关于y=b0对称的直线方程,先写成ax+b(y-b0)+c+bb0=0的形式,再写ax+b(b0-y)+c+bb0=0成形式,化简后即是的求值。
求对称图形:
⑴点(x1,y1)关于点(x0,y0)对称的点:(2x0-x1,2y0-y1)。
⑵点(x0,y0)关于直线Ax+By+C=0对称的点。
( x0-2A(Ax0+By0+C)/(A^2+B^2) ,y0-2B(Ax0+By0+C)/(A^2+B^2) )。
⑶直线y=kx+b关于点(x0,y0)对称的直线:y-2y0=k(x-2x0)-b。
⑷直线1关于不平行的直线2对称:定点法、动点法、角平分线
法。
到此,以上就是小编对于高中数学必修直线方程的问题就介绍到这了,希望介绍关于高中数学必修直线方程的3点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.sssnss.com/post/50114.html