高中数学必修二求圆的弦长(求圆的弦长公式必修二)

大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修二求圆的弦长的问题,于是小编就整理了4个相关介绍高中数学必修二求圆的弦长的解答,让我们一起看看吧。
圆的弦长公式两种?
1、弦长=2Rsina
R是半径,a是圆心角。
2、弧长L,半径R
弦长=2Rsin(L*180/πR)
弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线。
关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。
这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
三角函数怎么求两圆弦长?
公式一
d = √(1+k²)|x1-x2| = √(1+k²)[(x1+x2)² - 4x1x2] = √(1+1/k²)|y1-y2| = √(1+1/k²)[(y1+y2)² - 4y1y2]
关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式√(1+k²)[(x1+x2)² - 4x1x2]求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
圆中弦长公式?
圆的弦长公式是:
1、弦长=2Rsina
R是半径,a是圆心角
。
2、弧长L,半径R。
弦长=2Rsin(L*180/πR)
直线与圆锥曲线
相交所得弦长d的公式。
弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]
其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号。
PS:圆锥曲线, 是数学、几何学
中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线
,抛物线等。
圆的弦长的计算公式是a=2Rsin(α/2),圆半径为R,弦所对的圆心角为α,弦长为a,弦长为连接圆上任意两点的线段的长度,弦长公式是指直线与圆锥曲线相交所得弦长的公式。
圆的弦长公式?
答圆的弦长公式是:
1、弦长=2Rsina
R是半径,a是圆心角
。
2、弧长L,半径R。
弦长=2Rsin(L*180/πR)
直线与圆锥曲线
相交所得弦长d的公式。
弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]
其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号。
PS:圆锥曲线, 是数学、几何学
中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线
,抛物线等。
扩展资料:
若直线l:y=kx+b,与圆锥曲线相交与A、B两点,A(x1,y1)B(x2,y2)
弦长|AB|=√[(x1-x2)^2+(y1-y2)^2]
=√[(x1-x2)^2+(kx1-kx2)^2]
=√(1+k^2)|x1-x2|
=√(1+k^2)√[(x1+x2)^2-4x1x2]
知道弧长半径,求弦长。
已知弧长L=19.5米,半径R=14.2米。设该弧所对的园心角为φ,弦长为C,则φ=L/R(弧度),φ/2=L/2R, C=2Rsin(φ/2).
∴C=2*14.2sin(19.5/28.4)=28.4sin[(19.5/28.4 )(180°/π)]
=28.4sin39.34°=28.4*0.6339=18.00276米≈18米
到此,以上就是小编对于高中数学必修二求圆的弦长的问题就介绍到这了,希望介绍关于高中数学必修二求圆的弦长的4点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处:http://www.sssnss.com/post/25552.html